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SUMMARY

A novel interpretation of the momentum interpolation method (MIM) is presented in this paper. A
revised method using quadratic interpolating polynomials for the calculation of the cell-face velocities is
proposed. The performance of the proposed method (referred to as QMIM) is examined and its
application to the well-known lid-driven flow in a square enclosure problem is tested. The computed
results are compared with standard reported benchmark solutions for a wide range of flow conditions.
The numerical experiments show clearly the superiority of the new approach over the original MIM, in
terms of numerical accuracy, rate of convergence towards the grid-independent solution, and computa-
tional efficiency. Copyright © 2000 John Wiley & Sons, Ltd.
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quadratic interpolation

1. INTRODUCTION

In recent years, finite volume methods have become very popular for solving the incompress-
ible Navier–Stokes equations. When primitive variables (e.g. velocities and pressure) are used,
special treatment is required in the solution algorithm and the grid system used. The reason
stems from the fact that pressure does not have its own governing equation. The continuity
equation, having no explicit link to the pressure, is just an additional constraint on the velocity
field that must be satisfied together with the momentum equations, and it is an appropriate
manipulation of that constraint that leads to an equation for pressure correction [1].

The marker-and-cell (MAC) type staggered grid arrangement [1] (Figure 1(a)) of velocities
and scalar variables, first proposed by Harlow and Welch [2], has been widely used with great
success [3–6]. The main disadvantages of such an arrangement are the geometrical complexity
(due to the different sets of grids used for different variables), the discretization complexity of
the boundary conditions, and the difficulty of implementation to non-orthogonal curvilinear
grids [7] and multigrid solution methods.
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Figure 1. Typical control volume and velocities arrangement in (a) staggered and (b) non-staggered grid.

The use of a non-staggered grid arrangement, which stores all the variables at the same
physical location and employs only one set of control volumes (Figure 1(b)), reduces the
geometrical complexity and shortens the long computational time needed in the conventional
staggered methods. Though practically attractive, this arrangement has been shown to produce
non-physical oscillations in the pressure field [1]. This behavior occurs when central differenc-
ing is used to represent both the pressure gradient terms in the momentum equations and the
cell-face velocities in the continuity equation. It is then obvious that the momentum equations
depend on pressures at alternate nodes and the continuity equation on velocities at alternate
nodes and not on adjacent ones. This behavior is called velocity–pressure decoupling [8].

A remedy to the above problem is the momentum interpolation method (MIM), first
proposed by Rhie and Chow [9]. In this approach, the cell-face velocities in the continuity
equation are evaluated by linearly interpolating the discretized momentum equations for the
neighboring cell-centered velocities. This practice results in a strong velocity–pressure cou-
pling. The pressure gradient terms, appearing in the momentum equations, are still represented
by central difference approximation.

Subsequent work by Peric [7] refined the original method further. Majumdar [10] and Miller
and Schmidt [11] have removed the problem of underrelaxation parameter dependency of the
results, observed in Rhie and Chow’s formula. Previous authors have reported performance
comparisons between the staggered and non-staggered grid arrangements [11–16].

In this paper, a new interpretation of the MIM is provided. According to this interpretation,
the cell-face velocities used in the continuity equation consist of two terms. A linear
interpolation part of the neighboring pseudo-velocities (velocities that contain no pressure
effects) and a correction part that represents the contribution of the pressure gradient term on
the staggered control volume. Based on this interpretation, it is shown that enhancements of
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the original method can be derived by using higher-order interpolating functions for the
evaluation of the cell-face pseudo-velocities. Subsequently, a new formula based on quadratic
interpolating polynomials is proposed. The same quadratic formula is also used for the
representation of the pressure gradient terms. This results in a method of a greater formal
accuracy that, at the same time, retains the basic characteristics of the momentum interpola-
tion. This method is called the quadratic momentum interpolation method (QMIM).

In the following section, the equations to be solved are presented. The exposition will be
given for a two-dimensional field in order to preserve clarity of presentation. Extension to
three dimensions is simple and straightforward. The solution of these equations with the MIM
and its new interpretation is then given. The revised version of the method based on quadratic
interpolation functions is derived and its implementation in the SIMPLEC algorithm [4] is
described. Finally, in Section 3, the performance of the new scheme is examined through
computations of the lid-driven square cavity problem. Conclusions are summarized in Section
4.

2. MATHEMATICAL FORMULATION

2.1. The problem

The governing conservation equations for steady, two-dimensional, incompressible flows in
Cartesian or polar–cylindrical co-ordinates, with reference to Table I, can be written in the
form
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where G is the effective diffusion coefficient and S is the source term [1].
The discretization of the transport equations is performed using the finite volume approach

[1]. The computational domain is divided into a number of quadrilateral control volumes and

Table I. Expressions of the effective diffusion coefficient G and source the
term S in the momentum and continuity equationsa
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a a=1 for cylindrical and a=0 for Cartesian co-ordinates.
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all variables are stored at the geometric center of each control volume (Figure 1(b)).
Integration of Equation (1) over the control volume surrounding node P yields an algebraic
equation representing the balance of fluxes. The resulting algebraic equations for the u velocity
component at node P have the form

aP �PuP=%
k

akuk �P+bP−AP
x(Pe−Pw). (2)

The coefficients ai, representing the convection and diffusion effects, depend on the discretiza-
tion scheme used and the index k usually runs over the four neighboring nodes of P (E, W, N
and S in Figure 1(b)). The bP stands for the constant part of the discretized source term, which
does not include the pressure gradient and AP

x is a representative cross-sectional area at node
P. The last term in the above equation represents the x-direction pressure driving force acting
on the control volume. A similar equation can be obtained for the 6P velocity component. The
discretized form of the continuity equation is given by

reueA e
x−rwuwAw

x +rn6nAn
y −rs6sA s

y=0. (3)

Special attention should be given to the evaluation of cell-face velocities appearing in the
continuity equation (3), and the cell-face pressure values appearing in the momentum equa-
tions (2), in order to avoid the velocity–pressure decoupling problem [1,8] and the subsequent
non-physical oscillations in the pressure field.

2.2. Momentum interpolation method

Rhie and Chow [9] suggested the use of the same discretization equation for the cell-face
velocities as for the nodal ones where all terms, with the exception of the pressure gradient, are
obtained through linear interpolation of the corresponding terms in the equations for the
neighboring cell-centered velocities. The pressure gradient term is not interpolated but replaced
by the difference of pressure at the nodes between which the cell-face lies. This approach is
known as the MIM. In a general, two-dimensional, non-uniform grid, the east face velocity,
for example, is defined as follows:

ue=
%
k

akuk �e
aP �e

+
be

aP �e
−

A e
x

aP �e
(PE−PP), (4)

where
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be
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and fP
x is the x-direction linear interpolation factor, defined in terms of distances between

nodes as

fP
x =

Pe

PE

=
xe−xP

xE−xP

. (8)

The last term in Equation (4) represents the net pressure driving force acting on the ‘staggered’
control volume surrounding the east face.

By substituting Equations (5) and (6) into Equation (4) and rearranging, the cell-face
velocity can be expressed explicity in terms of the known nodal velocities

ue= fP
xuE+ (1− fP

x)uP+ fP
x AE

x

aP �E
(Pee−Pe)+ (1− fP

x)
AP

x

aP �P
(Pe−Pw)−

A e
x

aP �e
(PE−PP). (9)

Similar expressions can be obtained for the other cell-face velocities uw, 6n, 6s.

2.3. The new interpretation

The above expression (9) can be recast in a more compact format, which provides simplicity
and clarity. First, the momentum equation (2) giving the nodal velocity uP is rewritten in a
more convenient form,

uP= ûP+ ūP, (10)

where ûP is a pseudo-velocity [1] composed of the neighboring velocities and containing no
pressure terms,

ûP=
%
k

akuk �P
aP �P

+
bP

aP �P
, (11)

and ūP represents the contribution of pressure to the actual value of velocity,

ūP= −
AP

x

aP �P
(Pe−Pw). (12)

Using the above splitting formulation, Equation (4) can be recast into the following form:

ue= ûe+ ūe, (13)
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where

ûe= fP
xûE+ (1− fP

x)ûP (14)

and

ūe= −
A e

x

aP �e
(PE−PP). (15)

As can be seen, the expression giving ue (13) is made up of two parts. The first part,
representing the cell-face pseudo-velocity, is approximated by a linear interpolation of the
neighboring cell-centered pseudo-velocities. The second part stands for the contribution of
pressure and is evaluated by the pressure difference acting on the ‘staggered’ control volume
surrounding ue. The above observation is diagrammatically depicted in Figure 2. In the same
figure, the linear interpolation of the two cell-centered velocities ume is also portrayed. The
difference between this velocity and the one obtained by momentum interpolation, given by the
last three terms of the right-hand side of Equation (9), is responsible for removing the
velocity–pressure decoupling.

Equation (13) has a form similar to the momentum equations giving the cell-face velocities
in the conventional staggered grid arrangement. In the staggered grid method, the cell-face
pseudo-velocities are evaluated using the algebraic coefficients calculated on the staggered
control volumes. In the Rhie and Chow momentum interpolation practice, these pseudo-
velocities are evaluated explicitly, by linear interpolation of the cell-centered pseudo-velocities.
However, in the staggered grid method, linear interpolation is applied for the evaluation of

Figure 2. Principle of the linear and momentum interpolation for evaluation of cell-face velocities.
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convective velocities used in the coefficients of momentum equations. Many researchers
[11,14–16] have shown that SIMPLE-like algorithms on non-staggered grids, supplied with the
momentum interpolation practice, provide exactly the same results and the same convergence
behavior when compared with SIMPLE-like algorithms on staggered grids. The need for more
accurate results, especially on coarse grids, makes a further effort in improving the MIM
necessary, i.e. in the use of a more accurate interpolation practice for the evaluation of the
cell-face pseudo-velocities.

2.4. Quadratic momentum interpolation

An interpolation formula that has been shown to offer high accuracy in the field of
computational fluid dynamics (CFD) is quadratic polynomial interpolation, used in the
development of the QUICK differencing scheme [17]. The general form of the quadratic
interpolation formula has been presented by Arambatzis et al. [18] in their formulation of the
QUICK scheme. According to this formulation, the formulae giving the general transport
quantity 8 at the east and north cell-faces for a two-dimensional flow have the following form:

8e=Qe(8)

=
!8P+QAEP(8P−8W)+QBEP(8E−8P)+QCP(8S−8P)+QDP(8N−8P) ue]0

8E+QAWE(8P−8E)+QBWE(8E−8EE)+QCE(8SE−8E)+QDE(8NE−8E) ueB0
,

(16)

8n=Qn(8)

=
!8P+QCNP(8P−8S)+QDNP(8N−8P)+QAP(8W−8P)+QBP(8E−8P) 6n]0

8N+QCSN(8P−8N)+QDSN(8N−8NN)+QAN(8NW−8N)+QBN(8NE−8N) 6nB0
,

(17)

where the coefficients QAEp, QBEP, etc., are functions of the distances between nodes and are
given in Appendix A. The above formulae, representing the face averages of the quantity 8,
are derived by fitting a parabola to the nodal values and integrating along the cell-faces (see
Arampatzis et al. [18]).

Using the above formulae for the evaluation of cell-face pseudo-velocities, the expressions
giving the east face velocity can be written as

ue=Qe(û)+ ūe. (18)

Figure 3 depicts the principle of the expression (18), in a one-dimensional flow. As can be
seen, the cell-face pseudo-velocity is obtained by fitting a parabola to the values of pseudo-
velocity at three consecutive nodes; the two neighboring nodes plus the adjacent node on the
upstream side.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 1–22
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Figure 3. Principle of quadratic momentum interpolation for evaluation of cell-face velocities.

Figure 4. Lid-driven cavity configuration and boundary conditions.

Equation (18) can be expressed in the following computationally efficient form, using the
cell-centered momentum equations (11):

ue=Qe(u)+ ūe−Qe(ū). (19)

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 1–22
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This expression does not contain pseudo-velocities but velocity and pressure values, and can be
used immediately to compute u e

n, requiring no extra storage.
A similar expression can be obtained for the north face velocity

6n=Qn(6)+ 6̄n−Qn(6̄). (20)

The proposed interpolation is more appropriate when used in combination with the QUICK
differencing scheme, where the convected cell-face velocities are approximated to third-order
by formulae (16) and (17), setting 8=u or 6. The Rhie and Chow momentum interpolation of
the convecting cell-face velocities is of only second-order (the order of linear interpolation, see
Miller and Schmidt [11]). In the new quadratic momentum interpolation scheme, the convect-
ing cell-face velocities are approximated to third-order by formulae (19) and (2), giving an
overall third-order accuracy to the finite difference equations.

2.5. Effect of relaxation factor

When underrelaxation is incorporated to update the cell center velocities, aP �P in Equation (2)
is changed to aP �P/vu. As explained by Majumdar [10], this gives an interpolation method that
depends on the relaxation factor vu. This problem can be resolved by employing an explicit
underrelaxation in Equation (19) as

-

Figure 5. Horizontal velocity profile along cavity centerline, Re=400.
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Figure 6. Horizontal velocity profile along cavity centerline, Re=3200.

ue=vu[Qe(u)+ ū−Qe(ū)]+ (1−vu)u e
n−1, (21)

where the superscript n−1 refers to the previous iteration level. The above expression is
independent of the relaxation factor and it is more efficient than the one proposed by
Majumdar [10], which requires the storage of the cell-centered velocities at the previous
iteration level. Similarly, Equation (20) takes the form

6n=v 6[Qn(6)+ 6̄n−Qn(6̄)]+ (1−v 6)6n
n−1. (22)

2.6. E6aluation of cell-face pressures

In order to preserve overall consistency in an algorithm using the quadratic momentum
interpolation practice, it is reasonable to adopt the same interpolation method when calculat-
ing the pressure values at the cell faces. These values are needed for the evaluation of the
correction part of cell-face velocities according to the above interpolation practice, and also for
the calculation of the pressure gradient source term in the momentum equations. The
interpolation equations used are (16) and (17), where 8=P.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 1–22
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2.7. Implementation of QMIM in SIMPLEC

In the present study, the coupling between the continuity and the momentum equation is
treated by the SIMPLEC [4] algorithm. In the first step of SIMPLEC, the pressure field from
a previous iteration P* determines a tentative velocity field u*. To get a converged solution,
these starred fields have to be corrected by pressure and velocity corrections P %, u %. According
to the SIMPLEC algorithm, the pressure and velocity corrections are related through the
relation

u %P= −vuAP
xdP

u (P %e−P %w), (23)

where

dP
u =

1
(1−vu)aP �P−vuSP �P

. (24)

The continuity equation, however, requires the velocities at the cell faces only and not at the
cell centers. Following the principle of SIMPLEC, one may obtain the expression connecting
the pressure and cell-face velocity corrections

Figure 7. Horizontal velocity profile along cavity centerline, Re=10000.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 1–22



J. PAPAGEORGAKOPOULOS ET AL.12

Figure 8. Vertical velocity profile along cavity centerline, Re=1000.

u %e= −vuA e
xd e

u(P %E−P %P), (25)

where the d e
u is given by the quadratic interpolation of the neighboring nodal ones,

d e
u=Qe(du). (26)

In a similar manner, analogous expressions can be derived for all the cell-face velocities
appearing in the continuity equation. Inserting these expressions into the continuity equation
(3), the pressure correction equation is obtained as

aPPP= %
k

akPP+bP, (27)

where

aE=vureA e
xA e

xd e
u, aN=v 6rnAn

yAn
ydn
6, aP=%

k

ak, (28)
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bP= −reu e*A e
x+rwuw*Aw

x −rn6n*An
y +rs6 s*A s

y. (29)

The solution algorithm for the QMIM can be stated as follows:

1. Start with guessed values for velocity and pressure.
2. Solve the momentum equations to obtain the starred nodal velocities.
3. Calculate the starred cell-face velocities using Equations (21) and (22).
4. Solve the pressure correction equation.
5. Correct the pressure.
6. Correct the nodal velocities using Equation (23).
7. Correct the cell-face velocities using Equation (25).
8. Repeat steps (2)–(7) until convergence is reached.

3. APPLICATION TO A TEST PROBLEM

3.1. The test problem

The proposed QMIM is applied to the well-known lid-driven square cavity problem, in order
to validate the calculation procedure as well as to assess its performance relative to Rhie and

Figure 9. Vertical velocity profile along cavity centerline, Re=7500.
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Figure 10. Pressure distribution along cavity centerline, Re=400.

Chow’s MIM. Because of its geometric simplicity and strongly elliptical character, this case has
been served as a standard benchmark problem for the evaluation of new algorithms. Ghia et
al. [19] reported extensive solutions based on a vorticity–streamfunction formulation of the
flow equations and using a second-order differencing scheme and uniform fine-grid structures
of 129×129 and 257×257 nodes.

Figure 4 shows the flow geometry and the boundary conditions used. The problem is solved
for Reynolds numbers ranging from 400 to 10000. The Reynolds number is defined by
Re=rUL/m, where L is the length of the cavity and U is the velocity of the sliding wall. The
QUICK differencing scheme of Leonard [17], as presented in Reference [18], is used for the
discretization of the convective terms and the algebraic equations are solved by the strongly
implicit procedure (SIP) [20]. Each calculation was terminated when the sum of absolute
residuals for the continuity, u-momentum and 6-momentum equations became less then 10−5.
The residual is defined as

rn=A8n−B, (30)

where A represents the finite difference coefficient matrix and B represents the source term for
the finite difference equations.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 1–22
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3.2. The effect of Reynolds number

Figures 5–7 show the comparison of the horizontal velocity profiles along the vertical cavity
centerline (x/L=0.5) for Reynolds numbers 400, 3200 and 10000. The results are non-
dimensionalized using the velocity of the sliding wall U. Each figure provides a comparison
between the original MIM and the QMIM. Also, the results calculated by Ghia et al. [19] are
shown. All the results presented in this section are obtained on a coarse, uniformly spaced grid
consisting of 15×15 nodes (13 internal control volumes in each direction).

The comparisons clearly show the superior accuracy of the QMIM. The profiles plotted in
Figure 5, for Re=400, show that the results obtained by the QMIM are in closer agreement
with the benchmark solution for all computational nodes. As the Reynolds number increases
(Figures 6 and 7), the differences between the two methods with respect to the benchmark
results become more significant. This indicates that, at higher Reynolds numbers, the approx-
imations adopted for the evaluation of cell-face pseudo-velocities and the cell-face pressures
have significantly more influence on the accuracy of the final solution. This is the desirable
behavior of the new method making it suitable for high-Reynolds numbers simulations.

Profiles of the non-dimensional vertical velocity (6/U) along the horizontal cavity centerline
(y/L=0.5) are shown in Figures 8 and 9 for Reynolds numbers 1000 and 7500. The same
observations as before can be made.

Figure 11. Pressure distribution along cavity centerline, Re=7500.
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Figure 12. Variation of minimum horizontal velocity along cavity centerline as a function of grid
refinement, Re=1000.

Figures 10 and 11 show the pressure profiles along the vertical centerline for Reynolds
numbers 5000 and 7500, obtained by the MIM and QMIM methods. Ghia et al. did not
reported benchmark solutions for pressure. For this reason, the results are compared with the
solution obtained on a fine grid (155×155 nodes) using the MIM method. All the pressure
values are non-dimensionalized according to the relation p*= (P−Py=L)/rU2.

3.3. The effect of grid refinement

A study of the influence of grid refinement on the calculated results is presented in Figures 12
and 13. The value of the minimum predicted horizontal velocity at the vertical centerline,
plotted as a function of grid size for Reynolds numbers 1000 and 5000, is shown. It is clear
that the QMIM converges faster to the grid-independent solution for both cases. The results
for QMIM with 52×52 nodes are accurate enough to be regarded as grid-independent, even
at the highest Reynolds number used. The results obtained by the MIM method, for the same
grid size, are still poor. To achieve the grid-independent solution, the MIM method requires a
grid with more than 72×72 nodes. It is obvious that considerable saving in computational
time and storage can be made using the QMIM instead of the original Rhie and Chow
method.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 1–22
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A comparison of the two methods, in terms of the computational cost to a given level of
accuracy, is presented in Figure 14 for Re=1000. The horizontal axis represents the accuracy
of the results, as

Accurancy (per cent)=
�

1−
uG−uc

uG

�
×100, (31)

where uc is the minimum predicted horizontal velocity at the vertical centerline and uG is the
one predicted by Ghia et al. [19]. The vertical axis represents the overall computational cost
(CPU time and storage requirements) as

Computational cost (per cent)=
t

tmax

×
N

Nmax

×100, (32)

where t and N are the CPU time and the total grid nodes required by the run, where tmax and
Nmax are the ones required by the most expensive run. The curve corresponding to the QMIM
is always below the one corresponding to the MIM. This clearly shows that the new method

Figure 13. Variation of minimum horizontal velocity along cavity centerline as a function of grid
refinement, Re=5000.
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Figure 14. Computational efficiency diagram (accuracy versus cost), Re=1000.

requires less computer resources in order to achieve a given level of accuracy. The computa-
tional costs of the MIM and QMIM, for a level of accuracy equal to 99 per cent, are 54 and
12 per cent respectively, and for this accuracy, the QMIM is 4.5 times more cost-effective.

Finally, Figure 15 portrays a comparison of the results obtained by the QMIM on the finest
grid (101×101 nodes) with the results of Ghia et al. (257×257 nodes) at Re=1000. The two
curves are almost identical, confirming the behavior of the QMIM on fine grids when severe
under or overshooting problems are likely to arise.

4. CONCLUSIONS

In this paper it is shown that the original MIM can be presented in a more convenient way
with a more compact formulation. The new interpretation was based on the observation that
the discretized momentum equations for the cell-face velocities are composed of two parts. A
pseudo-velocity part calculated by the interpolation of the neighboring pseudo-velocities, and
a pressure driving force term on the ‘staggered’ control volume. Further, a new method (the
QMIM) was proposed, which uses quadratic interpolation formulae to determine the cell-face
pseudo-velocities. New compact and computationally efficient expressions, containing no

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 1–22
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Figure 15. Comparison of the QMIM fine grid solution with Ghia et al.’s results, Re=1000.

pseudo-velocities have been derived in order to be used in computer codes. Special attention
has been given to the implementation of underrelaxation practice in the new method. More
computationally convenient expressions, requiring no extra storage, have been derived. Cell-
face pressures were also calculated by the same interpolation formulae in order to maintain
overall consistency in the new method. Finally, the implementation of QMIM in the SIM-
PLEC algorithm has been described.

The proposed QMIM has been found to give more accurate results than the original MIM.
The difference between the two methods increases as the Reynolds number increases in the
lid-driven cavity benchmark problem. A grid refinement study has clearly shown the superior-
ity of the QMIM relating to computational time and storage requirements.

APPENDIX A. COEFFICIENTS OF QUADRATIC INTERPOLATION FORMULAE

The coefficients appearing in Equations (16) and (17) are defined in terms of distances between
nodes. For a general non-uniform grid, Figure 16, these coefficients are given by [18]

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 1–22
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Figure 16. A typical grid, labelling scheme and distances between nodes.

QAP=
DxP

2

3(DxP+DxW)(DxW+2DxP+DxE)
, (33)

QBP=
DxP

2

3(DxP+DxE)(DxW+2DxP+DxE)
, (34)

QCP=
DyP

2

3(DyP+DyS)(DyS+2DyP+DyN)
, (35)

QDP=
DyP

2

3(DyP+DyN)(DyS+2DyP+DyN)
, (36)

QAEP=
DxPDxE

3(DxP+DxW)(DxW+2DxP+DxE)
, (37)

QBEP=
2DxP

2 +DxPDxW

(DxP+DxE)(DxW+2DxP+DxE)
, (38)

QAWP=
2DxP

2 +DxPDxE

(DxP+DxW)(DxW+2DxP+DxE)
, (39)
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QBWP=
DxPDxW

(DxP+DxE)(DxW+2DxP+DxE)
, (40)

QCNP=
DyPDyN

(DyP+DyS)(DyS+2DyP+DyN)
, (41)

QDNP=
2DyP

2 +DyPDyS

(DyP+DyN)(DyS+2DyP+DyN)
, (42)

QCSP=
2DyP

2 +DyPDyN

(DyP+DyS)(DyS+2DyP+DyN)
, (43)

QDSP=
DyPDyS

(DyP+DyS)(DyS+2DyP+DyN)
. (44)
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